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The way in which internal waves change in amplitude as they propagate through 
an incompressible fluid or an isothermal atmosphere is considered. A similarity 
solution for the small amplitude isolated viscous internal wave which is generated 
by a localized two-dimensional disturbance or energy source was given by 
Thomas & Stevenson (1972). It will be shown how summations or superpositions 
of this solution may be used to examine the behaviour of groups of internal waves. 
In  particular the paper considers the waves produced by an infinite number of 
sources distributed in a horizontal plane such that they produce a sinusoidal 
velocity distribution. The results of this analysis lead to a new small perturbation 
solution o f  the linearized equations. 

1. Introduction 
The propagation of small amplitude waves in a non-dissipative stably stratified 

fluid has been studied by Moore & Spiegel(l964), Midgley & Liemohn (1966) and 
many others (see the review by Yeh & Liu 1974). The system of linearized equa- 
tions governing the motion of small amplitude waves can be reduced to ordinary 
differential equations by considering a wave form which is sinusoidal in the 
horizontal co-ordinate. One difficulty with the inviscid solutions is that the 
amplitudes o f  the internal waves increase exponentially with height. 

The effects of an exponentially increasing kinematic viscosity on the damping 
and reflexion of waves in an incompressible atmosphere was studied by Yano- 
witch (1967). He showed that, as the altitude increases and the viscosity becomes 
important, the wave amplitudes increase to a maximum and then reduce to 
zero a t  high altitudes. At the high altitudes where viscosity is important, energy 
is reflected back towards the ground. Yanowitch's solution at low altitudes is 
essentially an inviscid solution in which the amplitude ratio of the reflected wave 
and the wave with upgoing energy is given by exp ( - 27r2H/h,), where A, is the 
wavelength in the vertical direction and H is the stratification scale height. 
Consequently the reflected waves become important only when the wavelength 
is large compared with the scale height. 

For a viscous heat-conducting isothermal atmosphere the altitude at which 
the maximum amplitude occurs was obtained by a (not strictly valid) perturba- 
tion analysis by Pitteway & Hines (1963) and numerically by Midgley & Liemohn 
(1966). However the variation in the amplitude with altitude was not given. 
Yanowitch's theory has been extended to an isothermal atmosphere by Lyons & 
Yanowitch (1974) for very small Prandtl numbers. Warren (1972) has considered 
wave reflexions in an isothermal atmosphere and his results agree qualitatively 
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with Yanowitch’s incompressible theory. Warren’s amplitude ratio of reflected 
and incident waves for an isothermal atmosphere is exp ( - 2.rr2H/3h,). Lindzen 
(1970, 1971) and Lindzen & Blake (1971) included the effects of radiation in an 
atmosphere with arbitrary distributions of background temperature. Their 
numerical solutions for an isothermal atmosphere show that the wave amplitude 
increases with altitude before eventually tending to a constant value. 

Similarity solutions for an isolated internal wave were obtained for an incom- 
pressible viscous fluid by Thomas & Stevenson (1972, 1973) and for a viscous 
heat-conducting isothermal atmosphere by Stevenson, Bearon & Thomas (1  974). 
These are solutions for the wave which develops about a localized oscillatory 
disturbance. It is these solutions which are used in the present paper and it will 
be shown that, by distributing an infinite number of the ‘isolated’ waves, the 
problem studied by Pitteway & Hines (1963) can be solved. The solutions have 
A, no larger than twice the stratification scale height and it is found that the wave 
amplitudes approach zero a t  large altitudes without the addition of any reflected 
waves. This is compatible with Yanowitch‘s and Warren’s analyses, which show 
that wave reflexions are negligible for these wavelengths. 

First of all an incompressible fluid will be considered and a superposition of the 
isolated waves will be evaluated numerically. An approximate analytical integra- 
tion of the isolated waves is then presented and it is this solution which gives the 
clue to a small perturbation analysis of the linearized incompressible equations. 
Solutions for an isothermal atmosphere are then approached in a similar manner, 

2. Incompressible fluid 
2.1. A summation of the isolated waves 

Thomas & Stevenson (1972) considered an incompressible stratified fluid with 
a constant buoyancy frequency w,,. A horizontal cylinder oscillating at  a fre- 
quency w which is less than wo produces an internal wave which looks like 
a St Andrew’s cross. A similarity solution was obtained which showed that the 
amplitudes along the cross vary as X F ~ ,  where 

(1) 

X’ is the dimensionless distance defined by X’ = X/3sin8, where X is the true 
distance, with the X axis inclined a t  an angle I9 to the horizontal (figure 1).  vl is 
the value of the undisturbed kinematic viscosity on the X axis divided by the 
kinematic viscosity Y* at the virtual origin of the wave, where X = 0. p = %Ig is 
the inverse scale height and g is the gravitational acceleration. The background 
density distribution po is given by po = p* exp ( - Pz)  with the z axis vertical 
(figure 1). The undisturbed density distribution along the X axis is given by 

rl = p(X’)/p* = exp ( -  X’).  
The starred conditions are constant reference conditions at X = 0. The velocity 
component along the wave is given by 

U = (2) r;* X,p Re I< exp (iKy - K3) d K  (3) 
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FIGURE 1. The co-ordinate systems. 

where a is a constant amplitude coefficient, t is the time and r] is the similarity 
variable : 7 = ( Y/3 sin 6/aXt). (4) 

a is a viscosity coefficient given by 

a = {(wiv*/2g2) tan6sin6)f 

and 6 = sin-l(w/wo). We consider a kinematic viscosity which varies exponentially 
with height, so that v1 = exp X' .  This implies that the viscosity ,u has a constant 
value throughout the fluid. Thus from (1) 

X ,  = (expX'- 1). (6) 
The velocity component 7, which is in the Y direction, is found to be very small 
and it will be neglected in the numerical summations. 

Many isolated waves having the same frequency are now placed side by side 
with all their sources or virtual origins in the same horizontal plane. The sources 
extend from - 00 to + 00 and their phases are consistent with a sinusoidal velocity 
distribution of wavelength h in the horizontal direction. Referring to figure 1, we 
look for the contribution to the velocity at the point (X,O)  from a source of 
strength s 8% at P, which is a t  a distance x from A .  A ,  at which x = xo and z = xo, 
is the origin of the ( X ,  Y )  co-ordinate system. If the phase at  P is given by 
exp {i[k(x,, + 3)  - wt] ] ,  where k = 27r/h, then the contribution from the sources 
between x = - b and + b may be written, from (3), as 
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FIGURE 2. The variation of the vertical displacement amplitude D with height for an 
incompressible fluid. D(0) is the displacement amplitude at z = 0. w,, = 3.88 x 10-2 rad/s, 
p-1 = 6.56 km, uok/w,  = 2-4 and Y* at z = 0 is 6.24 x m2/s. The virtual origin of the 
waves was at zo = - 1 km. (Actually the virtual origin of the individual waves has no effect 
on the results as expected.) -, computed from superposition of individual waves using 
(7)  ; - - - - -, computed from superposition of individual waves using (7),  also the inviscid 
solution; - ---- -, from the superposition of waves using the Boussinesq approximation, 
coincident with the Boussinesq exponentially decreasing solution. 

with 

Y = ZsinO, X ,  = [exp{psinB(X-ZcosB))- 11, rl = (XI+ 1)-1. (8a-c) 

Equation (7)  is evaluated numerically, the first integral being truncated when 
further increases in lbl have no noticeable effect on the velocity U to three signi- 
ficant figures. The equation for the amplitude of the particle displacements is the 
same as that for the velocity except that the phase differs by n and the constant 
amplitude coefficient has a different value. 

In  figure 2 the variation of amplitude with height is presented for several 
wavelengths and a particular background stratification. From the computations 
it was found that lines of constant phase are almost straight lines at  an angle 0 to 
the horizontal. The horizontal phase velocity uo of the resulting wave system is 
directed towards higher x (see figure 1)  and uo = hwosinO/2.rr. Consequently, by 
superposition of a velocity -a,, on the co-ordinate system, the flow model is 
equivalent to a stationary wave system through which there is a mean horizontal 
flow of velocity - uo. 

It is possible to integrate ( 7 )  approximately without resorting to computation. 
The width of the individual waves is very small and the integration with respect 
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to x has contributions only from sources within a very small range of Z. Thus 
z < X ,  so that the expression (8 b )  for X, is approximately 

(9) XI = (exp (Xpsin 0 )  - 1). 

The integral with respect to Z in (7) can now be taken from - 00 to + 00 and, 
after changing the order of integration, 

where 6[  ] is the Dirac delta function. This readily integrates to give 

The expressions for rl, a and X,, (Z), (5) and (9) respectively, are substituted 
into (12) to give 

sin8 v*k3 (exp[Xpsin 81 - 1) 
20,p sin48 

+ i(kx, - wt )) . (1 3) 

If the waves are stationary relative to the co-ordinate system and U is written in 
terms of the vertical co-ordinate z with z = 0 a t  the level of the virtual origins 
of the individual waves then 

v*k3(exp/3z- 1) U ( X , Z )  = U(0)exp 

where 8 = sin-l(u,k/w,) and U(0)  is constant. 
If (1 3) or (14) is used to calculate curves of amplitude against altitude these 

curves are indistinguishable from the numerical results shown in figure 2. Curves 
for larger wavelengths are shown in figure 3. For large wavelengths, the ampli- 
tude initially increases exponentially with height, following the inviscid theory, 
before eventually attenuating. For small wavelengths, the amplitude decreases 
exponentially with height, a result which can be readily deduced from the 
Boussinesq equations, If the Boussinesq approximation had been made initially 
then this would have been equivalent to writing r, = 1 and X' = X, in the 
above equations. The solution for the vertical velocity perturbation would then be 

U sin 8 2: w(2, x )  = w(0) exp ) 2w0 sin4 8 cos 8 ' 

This equation can be derived directly from the Boussinesq form of the linearized 
Navier-Stokes equations without using the isolated-wave theory. However the 
details are not included because a more general sohtion is presented in the next 
section. 

In  this paper the waves are assumed to be excited by some mechanism a t  
z = 0 or below, and there will beno attempt to match the solutions to a boundary- 
layer region over a ground. 
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FIUURE 3. The variation of the velocity perturbation Iw(z)l with altitude for an incom- 
pressible fluid. The background stratification is the same as that in figure 2. -, ------, 
from equation (13); - -, equation (20) using the coefficients A ,  B and C .  The perturba- 
tion parameter E ezl > 0-1 to the right of the chain-dashed line. 

2.2. Perturbation analysis 
For a steady flow the linearized incompressibility equation and the continuity 
equation are aupx + awlaz = o (15) 

and - uo +lax + w apolaz = o, (16) 

where ( - uo, 0) is a constant mean flow velocity and u and w are the velocity per- 
turbations in the x and z directions, with the x axis horizontal and the z axis 
vertically upwards. p is the density perturbation. The linearized momentum 
equations, obtained by subtracting the hydrostatic relations, are 

(17) 

(18) and 
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The viscosity ,u is assumed to be constant. We shall look for a wave solution 
which is sinusoidal in x, so that w = w(z)expikx, p = p(z)expikz, etc. The 
pressure perturbation p is eliminated between (17) and (18), p is eliminated 
using (16) and finally u is eliminated using ( 15). The resulting differential equation 
for w is 

with po = p* e-p2. The boundary conditions are that w and all its derivatives 
must approach zero as z-foo and w = w(0) at x = 0. In view of the results of the 
superposition of the individual waves, we look for a solution of the form 

w(zl) = w( 0) exp (Az, - B[e(eZi - 1) + C$(e&i - 1) + De(ea1- 1). . .]I, (20 )  

where € = v*k/uo, z1 = zp. (21 )  

A = i - i l { K 2 ( ~ ~ / ~ t k 2 -  I)-$}*/, (22)  

B = - i ( P - A 2 ) 2 / ( 2 A P )  (23) 

On substituting this form for w into (19) and equating terms of like order in eezi 
it is found that 

and 

where K = k / p .  We shall restrict our attention to internal-wave solutions, and 
for these K2(u;/u:k2- 1) > $. The sign of the square root in the expression for A 
corresponds to an inviscid solution without reflected waves. This will be dis- 
cussed later. 

When the amplitude variation with height is evaluated from (20) using the 
coefficients A,  B and C,  it is again found that there is no distinguishable difference 
between the results and those shown in figure 2. On further examination i t  is 
seen that, if A and B are expanded in terms of K-1 and if 0 is introduced as 

C = {i[( 1 + 4A + 6A2 + 4 A 3 )  - 2K2( 1 + 2A)] + BK2} / [2K2(  1 + 2A)], (24 )  

~ 

sin-l(uok/w0), then 

A =  ( 2  I-- 1 +o(;))) 

and 

These leading terms are identical with those in ( l a ) ,  which was obtained from the 
integration of the isolated waves. 

Equation ( Z O ) ,  with the coefficients A,  B and C, has been used to evaluate the 
amplitude-altitude curves which are plotted in figure 3. The region in which 

> 0.1 is also shown and it is in this region that (13) and (20) differ slightly. 
Equation (20 )  for w(z) may be used to calculate mountain lee waves using an 

equation for the vertical velocity perturbations or for the vertical displacements 
of the form 

jOkrn.f(k) w ( 4  dk,  

where km is an upper limit on the wavenumber determined by the condition 
eez1 1. uo is constant andf(k) is chosen to satisfy a particular ground profile. 
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FIGURE 4. The variation of the perturbation velocity Iw(z)] with height for an iso- 
thermal atmosphere. /3 = 4.36 x m-1, oo = 2.07 x lo-* rad/s, y = 1-40, g = 9.81 m/s*, 
a,, = 295 m/s, u* = 0.72, uok/oo  = 2 4  and v* a t  z = 0 is 6.24 x m2/s. The z = 0 condi- 
tions correspond to the International Standard Atmosphere (ISA) at 14 km. -, super- 
position of individual waves; - ----, superposition of individual waves, also the inviscid 
solution; ------ , the Boussinesq solution with rl = 1 and X ,  = X’. 

The altitude is limited by the condition eezl Q 1. C is of order unity in the 
calculations of the present paper but its value will depend on k and uo. Conse- 
quently the condition CeP1-g 1 must be checked in any calculation. The lee 
waves of course will not satisfy a no-slip condition at  the ground. 

3. Isothermal atmosphere 
3.1. Summation of the isolated waves 

A similarity solution for an isolated wave in a viscous heat-conducting atmosphere 
was derived by Stevenson et al. (1974). The solution has the same form as the 
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FIGURE 5. Results for larger wavelengths in an isothermal atmosphere having the same 
bmkground conditions as that in Sgure 4. The perturbation parameter eezl > 0.1 to the 
right of the chain-dashed line. 

incompressible solution and the velocity along the wave is again given by (3)-(5). 
However the rl and X ,  are now defined by 

(27) rl = exp [ - rX’/kJ - 111 

and 
x, = ( l + - p ) ( y ) ( e x P ( ~ ) - l ) y  1 7-1 

where CT* is the Prandtl number and y is the ratio of the specific heats. Both CT* and 
y are assumed constant. The buoyancy frequency is given by wo = (y - l)* g/a,, 
where a,, is the sound speed, which is constant. The individual waves are again 
summed numerically and the amplitude variation with height is shown in 
figure 4 for several wavelengths. The Boussinesq approximation is reasonable 
when the wavelength is less than 20 m. 

An approximate integration of the isolated waves again produces (12) and, 
after substituting for r, and XI, the velocity distribution becomes 

and the temperature distribution takes a similar form. The amplitude-altitude 
curves from (29) are indistinguishable from the numerical summations shown in 
figure 4. Results for larger wavelengths are shown in figure 5. 
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3.2. A small perturbation analysis 

The linearized continuity and momentum equations for an isothermal atmo- 
sphere are 

- 

where A, is the second coefficient of viscosity and both p and A, me taken as 
constants. The energy equation and the equation of state are 

and (34) 

where T is the temperature perturbation, c, is the specific heat at  constant volume, 
k, is the thermal conductivity and the subscript zero refers to the undisturbed 
background conditions. Again we look for a wave solution of the form 

p is eliminated from the equations using the equation of state, u is eliminated 
using (30) and then p is eliminated using the energy equation. The momentum 
equations are now rather long ordinary differential equations in w and T.  In 
view of the results of the individual-wave summation, and from the incom- 
pressible solution, the following expressions are chosen for w and T :  

and 

where S is a constant which is related to the temperature T(0)  at z = 0 by 
T(0) = (1 +DE +Be2 + ...) S. The dimensionless vertical co-ordinate x1 = ygz/at 
and e = v*k/uo. These are substituted into the differential equations and terms 
of like order in eezl are equated. It is found that 

w = w(z) exp ikx, p = p ( x )  expikx, etc. 

w(zl) = w(O) exp{Az, - B[e(ezl- 1 )  + Ce2(eal - 1) + ...I} (35) 

(36) T(xJ = S(1+Deez1+Be2ez21+ ...) exp{Azl-B[~(ez~-l)+ ...I}, 

A = Jj--il{K2(~g/U~k2+Ma- l)-$)il, (37) 

- iao( 1 - y A M 2 )  
S =   KC, M (  1 - M 2 )  w(0)  (39) 

and 

D =  Y J f 2  
( A y  + 1) (1 - yAM2) 

{B( 1 - y A )  - iyKZF( 1 - M2)) 

iY ( A M z  (1 +$I -.-), P ( A  + 1)  (40) 
(AY + 1)  

+ 
where K = kaglyq, M = uo/ao and P = 1 - (Az/KZ). 
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FIGURE 6. The variation in the perturbation Iw(z)I with the frequency ratio u,,k/uo for 
several wavelengths, showing the ratio of the perturbation at z = 90 km to that at z = 0. 
The conditions we the same as those in @re 4. 

If A and B are expanded in powers of K-l then 

A = ~-iK~otO{l+O(K-l)}  (41) 

and B =  2 sin3 0 cos 0 (1  +&) (1 +O(K-1)). 

These leading terms give the same equation as that from the superposition of the 
individual waves, equation (29). The region in which the perturbation parameter 

> 0.1 is to the right of the chain-dashed line in figure 5. The way in which the 
angle 8 or the frequency ratio u, k/u,  affects the wave amplitude is given by (29) 
and specific examples are shown in figure 6. 

The altitude z, a t  which the velocity perturbation [ w(z)I reaches a maximum, 
from (29), is 

This equation has been used to evaluate the curves in figures 7 and 8. 

inviscid solution. Their perturbation equations have the solution 
Pitteway & Hines (1963) studied the viscous problem as a perturbation of the 

(44) w(z) = w1( 1 - v*k34 ezl/2ygo, sin40 cos O ) ,  
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FIUURE 7. The altitude at which the perturbations are a maximum. z = 0 corresponds to 
14 km in the ISA. A, and k, are the z-direction wavelength and wavenumber respectively. 
-, equation (43); A = A,. 

where w, is the inviscid solution without reflected waves. From this equation 
the altitude a t  which the velocity is a maximum is given by 

a: 
Yg 

2 ygw, sin4 8 cos 0 
2, = -log, (3 (45) 

Equations (45) and (43) differ by a factor of and a conduction term (1 + cr*-I). 
The erroneous Q in (45) arises because the correction to the inviscid solution is 
no longer small at the maximum amplitude position. 

The analysis presented in the present paper is not a perturbation of the inviscid 
solution and is more general than that of Pitteway & Hines. The present solution 
reduces to (44) only if the following extra simplifications are imposed: (a) K-1 4 1, 
(b) &eZ1 < 1, which is equivalent to assuming that the solution is a perturbation 
of the inviscid solution, and ( c )  thermal conduction effects are neglected. 

Yeh & Liu (1974) have found z, by considering the energy dissipated within 
the atmosphere. At a particular position in the atmosphere the change in 
amplitude of a wave is written as exp (Az,  - EzJ, where exp Az, is the exponential 
increase in the inviscid solution. E is a damping coefficient given by the time- 
averaged energy dissipation divided by twice the vertical component of the 
energy flux for an inviscid atmosphere. The altitude at  which the amplitude is 
a maximum occurs when = A .  For large K ,  Yeh & Liu’s solution for the 
position of maximum amplitude is the same as (43). 

Midgley & Liemohn’s (1966) numerical solution is for a realistic atmosphere 
and the viscosity variation is different from that in the present paper. Even so, 
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FIGURE 8. The altitude z, a t  which the velocity Iw(z)l is a maximum, for several periods 
of oscillation. T = 277/2c0k; A, is the wavelength in the z direction. -, equation (43); 

, Midgeley & Liemohn (1966), T = 1Omin. 

the positions of the maximum amplitudes, shown in figure 8, are not too far from 
those predicted by (43). Midgley & Liemohn also have the perturbations ap- 
proaching zero at  large x as in this paper. However this is unlike the behaviour 
in hhe paper by Lindzen (1970), where the perturbations approach a constant 
value at  large heights. Lyons & Yanowitch (1974) also have perturbations 
approaching a constant value but their solution is for Prandtl numbers which 
are an order of magnitude less than that used here. Their isothermal-atmosphere 
solution is for the disturbance over a flat surface which performs vertical oscilla- 
tions and k is zero. They do indicate that at larger Prandtl numbers the behaviour 
should be similar to that of Yanowitch‘s (1967) incompressible solution, for 
which the perturbations do approach zero at large heights. 

The present theory has not included the effects of the reflected waves con- 
sidered by Yanowitch (1967) or Warren (1972). However the largest vertical 
wavelengths used for both the incompressible and the isothermal case are about 
10 km. This corresponds to ratios of the amplitudes of the reflected and incident 
waves of 3 x 10-8 from Yanowitch’s incompressible theory and 1.4 x lo-* from 
Warren’s isothermal theory. Thus for both cases the reflected waves are of 
negligible magnitude. 

50 F L M  72 
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4. Conclusions 
It has been shown that the previous isolated-wave solutions of Thomas & 

Stevenson may be superimposed to calculate a wave system which is sinusoidal 
in the horizontal direction. Although a constant viscosity was used in the sum- 
mations for incompressible fluid, the theory could accommodate variations in 
viscosity. The wave summations suggested new small perturbation expansions 
for the solution of the linearized equations for both an incompressible fluid and 
an isothermal atmosphere. The first terms in the expansions have been obtained. 
The equations have been used to calculate the way in which the amplitude varies 
with height and with the angle at which the energy is propagating. 

Groups of waves may be summed in a similar manner. The edges of the groups 
will attenuate whereas the waves in the central regions of the groups will initially 
amplify provided that the wavelength is sufficiently large. Simple examples were 
given by Stevenson et al. (1974).  

The authors appreciate the helpful discussions with Dr I. M. Hall. 
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